

Mark Scheme (Results)

October 2022

Pearson Edexcel International Advanced Level In Mechanics M1 (WME01) Paper 01

Question Number	Scheme	Marks
1.	$S \xrightarrow{4 \text{ m s}^{-1}} S$ $- v \text{ m s}^{-1}$	
1(a)	$20000 \times 4 = 50000v$ $v = 1.6 \text{(m s}^{-1})$ OR $20(-v - (-4)) = 30(v - 0)$	M1 A1
		(2)
1 (b)	$\pm 20000(1.6-4)$ OR $\pm 30000 \times 1.6$	M1A1 ft
	48000 N s or 48 kN s	A1
		(3)
		(5)
	Notes for question 1	
1 (a)	M1 for a CLM equation, condone sign errors and extra g 's and any equivalent equation (e.g. $2 \times 4 = 5v$, $20 \times 4 = 50v$, $200 \times 4 = 500v$, etc) OR: for equating impulses	
	A1 oe Units not needed but must be positive .	
1(b)	M1 impulse-momentum equation, dimensionally correct, correct no. of terms, condone sign errors but must be attempting a difference of momenta (allow 20 or 30 for the mass, M0 if g included or mass omitted)	
	A1 ft a correct equation, follow through on their <i>v</i>	
	(allow 20 or 30 for the mass)	
	N.B. If using <i>S</i> to find the impulse, 4 and their <i>v</i> must have opposite signs when awarding the A1ft.	
	A1 cao units needed (allow kg $\mathrm{m\;s}^{-1}$) and must be positive.	

Question Number	Scheme	Ma	ırks
2(a)	$M(D), \frac{3a}{5}Xg = \frac{2a}{5}Mg$	M1	A1
	Other possible equations:		
	$(\uparrow)T_D = Mg + Xg$		
	$M(A), Mga + Xg 2a = T_D \frac{7a}{5}$		
	$M(B)$, $Mga = T_D \frac{3a}{5}$ T_D would then need to be eliminated		
	$M(C), Mg \frac{3a}{5} + Xg \frac{8a}{5} = T_D a$		
	$M(G), Xga = T_D \frac{2a}{5}$		
	$X = \frac{2M}{3} , 0.67 M \text{ or better}$	A1	(3)
2(b)	$M(D), T_C a + \frac{1}{2} Mg \frac{3a}{5} = \frac{2a}{5} Mg$	M1	A1
	Other possible equations:		
	$(\uparrow)T_C + T_D = Mg + \frac{1}{2}Mg$		
	$M(A)$, $Mga + \frac{1}{2}Mg2a = T_C \frac{2a}{5} + T_D \frac{7a}{5}$		
	M(B), $Mga = T_C \frac{8a}{5} + T_D \frac{3a}{5}$ T_D would need eliminating		
	$M(C), Mg \frac{3a}{5} + \frac{1}{2}Mg \frac{8a}{5} = T_D a$		
	$M(G), T_C \frac{3a}{5} + \frac{1}{2}Mga = T_D \frac{2a}{5}$		
	$T_C = \frac{1}{10} Mg$ oe	A1	(3)
		(6)
	Notes for question 2		
	M1 For an equation (or inequality,,,) in X , M and a only (allow		
2 (a)	consistent missing a's) with correct no. of terms.		
()	Allow if one g is missing.		
	N.B. M0 if Tc appears and never becomes zero		
	A1 Correct equation or inequality		
	A1 cao M1 For an equation in Tc, M, g and a only (allow consistent missing		
	a's or if $g(s)$ missing) with correct no. of terms		
2(b)	M0 if they assume that $T_C = T_D$ or if they assume their X value from		
	(a).		
	A1 Correct equation		
	A1 cao		

Question Number	Scheme	Marks
3(a)	$ \begin{array}{c} R \\ \hline 14.7 \\ \hline 2g \end{array} $	
	(Could be $-F$) OR: $(\rightarrow), 14.7 + F \cos \alpha = R \sin \alpha$ $(\uparrow), R \cos \alpha + F \sin \alpha = 2g$ equation in F only. AND eliminate R to give an	
	Verification methods $14.7\cos\alpha = (11.76) = 2g\sin\alpha$ (i.e. verification that $X = 14.7 => F = 0$) OR: $X\cos\alpha = 2g\sin\alpha => X = 14.7$	M1 A1
	(i.e. verification that $F = 0 \Rightarrow X = 14.7$) so $F = 0$ * oe	A1* (3)
	X F_1 $2g$	
3(b)	$F_1 = 0.5S$	B1
	Two equations taken from: (\Box), $X \cos \alpha + F_1 = 2g \sin \alpha$ (\Box), $S = X \sin \alpha + 2g \cos \alpha$ (\rightarrow), $X + F_1 \cos \alpha = S \sin \alpha$ (\uparrow), $S \cos \alpha + F_1 \sin \alpha = 2g$	M1A2 M1A2

	N.B. M0 for both equations if they put $X = 14.7$ anywhere	
	X = 4g/11, 3.6 or 3.56 or 3.57	A1
	N.B. Enter marks for the equations on ePen in the order in which	
	they appear above.	
		(8)
		(11)
	Notes for question 3	
	M1 Equation in F only, correct no of terms, condone sign errors and	
2(-)	\sin/\cos confusion (M0 if they use $F = 0.5R$)	
3 (a)	N.B. Allow the equation without F	
	Allow use of <i>m</i> instead of 2 for the Mmark	
	A1 Correct equation	
	A1* cao Must state a conclusion or,	
	if verifying, must state clearly	
	$X = 14.7 \Rightarrow F = 0$ OR $F = 0 \Rightarrow X = 14.7$	
3(b)	B1 $F_1 = 0.5S$ seen e.g. on a diagram (even if wrong direction)	
	M1 A resolution, correct no of terms, condone sign errors and sin/cos	
	confusion	
	Allow use of <i>m</i> instead of 2 for the A mark	
	A2 Correct equation, -1 each error	
	M1 A resolution, correct no of terms, condone sign errors and sin/cos	
	confusion	
	Allow use of <i>m</i> instead of 2 for the A mark	
	A2 Correct equation, -1 each error	
	A1 cao	

Question Number	Scheme	Marks
4 (a)	3616 - 250g - 565 - 226 = 250a	M1 A1
	$a = 1.5 \text{ (m s}^{-2})$	A1
		(3)
4(b)	$565 - mg = m \times 1.5$	M1A1ft
	m = 50 (kg)	A1
		(3)
		(6)
	Notes for question 4	
4 (a)	M1 Equation in <i>a</i> only , correct no. of terms, condone sign errors	
	A1 Correct equation	
	A1 oe	
4(b)	M1 Equation in <i>m</i> (mass of A) only , correct terms, condone sign errors	
	A1ft Correct equation ft on their a	
	A1 cao	

Question Number	Scheme	Marks
5(a)	$0 = 14.7^2 - 2gs$	M1A1
	22 or 22.1 (m)	A1
		(3)
	$19.6 = 29.4t + \frac{1}{2}gt^2$	M1A1
5(b)	N.B. $19.6 = 29.4t - \frac{1}{2}gt^2$ is M0A0	
	$-19.6 = 29.4t + \frac{1}{2}gt^2 \qquad \text{is } M0A0$	
	$-19.6 = 29.4t - \frac{1}{2}gt^2$ is M0A0 unless they go on to subtract 6	
	from the positive root	
	t = 0.61 or 0.606 (s)	A1
		(3)
5(c)	29.4	B1 shape B1 29.4
	0t	B1 3
		(3)
		(9)
		()
	Notes for question 5	
5(a)	M1 Complete method to find distance UP N.B. They may find time UP (1.5s) AND use it to find distance UP OR : (Distance from A to top – Distance from '14.7' to top) = (44.1 – 33.075)	
	A1 Correct equation(s) used	
	A1 cao	
	M1 Complete method to find required time	
5 (b)	N.B. They may find the speed as it hits the ground ($g\sqrt{13} = 35.334$)	
. ,	AND use it to find the time.	
	A1 Correct equation(s) used	
	A1 cao N.B. If they add to or subtract from 0.606, it's M0 for an incorrect method.	
5(c)	B1 V shape with v coord of end pt > 29.4 and each half roughly equally inclined to the t -axis. B0 if a vertical line is included at the end.	
	B1 29.4 independent	
	B1 3 independent	

Question Number	Scheme	Marks
6(a)	$(-3\mathbf{i}+2\mathbf{j})+(p\mathbf{i}+q\mathbf{j})=(-3+p)\mathbf{i}+(2+q)\mathbf{j}$	M1
	$\frac{(-3+p)}{(2+q)} = \frac{1}{-2}$	M1A1
	2p+q-4=0* Allow $0=2p+q-4$ but nothing else	A1*
		(4)
6(b)	$p = 5 \Rightarrow q = -6 \Rightarrow \text{Resultant force} = (2\mathbf{i} - 4\mathbf{j})$	B1
	$(2\mathbf{i} - 4\mathbf{j}) = 0.5\mathbf{a}$	M1
	$\mathbf{v} = (4\mathbf{i} - 8\mathbf{j}) \times 4$	M1
	Speed = $\sqrt{16^2 + (-32)^2}$ = $\sqrt{1280} = 16\sqrt{5} = 36 \text{ (m s}^{-1}\text{)}$ or better	M1A1
		(5)
		(9)
	Notes for question 6	
6(a)	M1 For adding <i>and</i> collecting i 's and j 's. N.B . Could be implied by $p = 4$ and $q = -4$	
	M1 Using ratios oe to set up an equation in p and q only, allow the ratio the wrong way round. M0 if they write down: $-3 + p = 1$ and $2 + q = -2$ and NEVER use	
	ratios, but ignore these equations if they go on to use ratios	
	A1 Correct equation	
6(b)	A1* Correct answer correctly obtained B1 Correct resultant force seen	
<u> </u>	M1 Use of $\mathbf{F} = m\mathbf{a}$ OR $F = ma$ where $\mathbf{F}(F)$ is their <i>resultant</i> (must have attempted to add the two forces) (M0 if they include g)	
	M1 Use of $\mathbf{v} = \mathbf{a}t$ OR $v = at$ with $t = 4$ where \mathbf{a} or a is their	
	acceleration. (M0 if \mathbf{u} or u is non-zero)	
	M1 Use of Pythagoras to find magnitude of v OR a OR F, including	
	square root	
	N.B. The above 3 steps may appear in any order but must be entered on ePen in the order as above.	
	A1 Any equivalent surd or correct to at least 2 SF	

Question Number	Scheme	Marks
7(a)	$F = \mu mg$	B1
	For P : $mg - kmg = ma$ Allow $mg - T = ma$	M1A1
	For P : $mg - kmg = ma$ Allow $mg - T = ma$ For Q : $kmg - F = ma$ Allow $T - F = ma$	M1A1
	Either of these may be replaced by : $mg - F = 2ma$ (whole system)	
	Produce an equation in k and μ only using $T = kmg$	M1
	$k = \frac{1}{2}(1+\mu)$	A1
		(7)
	Attempt to find the acceleration.	M1
7(b)	[Note that some possible correct forms are: $a = \frac{1}{2}g(1-\mu)$ or $g(1-k)$	
	or $g(k-\mu)$]	
	$d = \frac{1}{2} \times \frac{1}{2} g(1 - \mu)t^2$	M1A1
	or $g(k-\mu)$] $d = \frac{1}{2} \times \frac{1}{2} g(1-\mu)t^2$ $t = \sqrt{\frac{4d}{g(1-\mu)}}$	A1
		(4)
7(c)	P or Q (or the system) would not move	B1
	Accept any of $T = mg$, $T > mg$, $T \ge mg$, $a = 0$, $a < 0$, $a \le 0$	
	$F = T, F > T, F \ge T$, $F > mg$. Allow F replaced by μR	77.
	N.B. Forces referred to must be clearly defined so	D B1
	e.g. use of vague terms like 'forward force', 'opposite force', 'force to the left or right' is B0.	
		(2)
		(13)

	Notes for question 7
7(a)	B1 for $F = \mu mg$ seen e.g. on a diagram
	M1 Equation of motion for <i>P</i> with correct no. of terms, condone sign errors
	A1 Correct equation (allow -a)
	M1 Equation of motion for <i>Q</i> with correct no. of terms, condone sign errors
	A1 Correct equation (allow -a) N.B. (-a) must be used in both equations
	M1 for producing an equation in k and μ only
	A1 oe Must appear in (a)
7(b)	M1 Attempt to find the acceleration in terms of g and μ or g and k or g , k and μ
	M1 Complete method to find an equation in d , g , t and μ only, condone a sign error.
	A1 Correct equation in d , g , t and μ only
	A1 Any equivalent form
7(c)	B1 Correct statement. B0 if incorrect extras.
	DB1 Correct reason

Question Number	Scheme	Ma	ırks
	Allow column vectors throughout		
8 (a)	$\sqrt{3^2 + 12^2}$	N	1 1
	$\sqrt{153}$, $3\sqrt{17}$, 12 or better (km h ⁻¹)	Α	.1
		(2	2)
8 (b)	$(-9\mathbf{i} + 6\mathbf{j}) + t(3\mathbf{i} + 12\mathbf{j})$	M1	A1
	$(16\mathbf{i} + 6\mathbf{j}) + t(p\mathbf{i} + q\mathbf{j})$		A1
	$\overline{AB} = \mathbf{b} - \mathbf{a} = (16\mathbf{i} + 6\mathbf{j}) + t(p\mathbf{i} + q\mathbf{j}) - ((-9\mathbf{i} + 6\mathbf{j}) + t(3\mathbf{i} + 12\mathbf{j}))$	M1	A1
	$= [25 + t(p-3)]\mathbf{i} + t(q-12)\mathbf{j}]$		
	Compare with: $[(25-12t)\mathbf{i} - 9t\mathbf{j}]$ or e.g. use $\mathbf{b} = \mathbf{AB} + \mathbf{a}$ to obtain an		
	equation in p only and an equation in q only. May be implied by correct answers only.		
	(-12 = p - 3 and -9 = q - 12)	M	11
	N.B. This mark may not be available if they go wrong and the <i>t</i> 's don't cancel.		
	p = -9, $q = 3$	A	.1
		(7)
8(c)	$(25-12t)^{2} + (-9t)^{2} = 15^{2} $ (225t ² - 600t + 400 = 0)	M1	A1
	$t = \frac{4}{3}$	A	.1
	$\pm (9\mathbf{i} - 12\mathbf{j})$ Note that this a method mark.	DI	M 1
	$\tan \theta = \frac{9}{12}$	N	1 1
	$\theta = 37^{\circ}$	A	.1
	Bearing is 323° to nearest degree	Α	.1
			(7)
		(1	6)

	Notes for question 8	
8 (a)	M1 Use of Pythagoras with square root	
	A1 cao	
8 (b)	M1 Correct structure for either	
	A1 cao	
	A1 cao	
	M1 Allow $\mathbf{a} - \mathbf{b}$	
	A1 for a correct unsimplified expression for either $\mathbf{b} - \mathbf{a}$ or $\mathbf{a} - \mathbf{b}$	
	M1 for an equation in p only and an equation in q only	
	A1 cao	
8 (c)	M1 Use of Pythagoras to give an equation in t only	
0(0)	Allow with a square root.	
	A1 Correct unsimplified quadratic equation	
	A1 $t = 1.3$ or better	
	D M1 Use of their t to find \overrightarrow{AB} or \overrightarrow{BA} , dependent on previous M. May	
	be implied. Allow if they use one of their two incorrect <i>t</i> values.	
	M1 For an equation in a relevant angle for their AB . Could be implied	
	by a relevant angle seen on a diagram which could need checking with a	
	calculator	
	A1 Correct relevant angle e.g 37°,53°,127°, etc or better	
	A1 cao	